Cash Award Question of Apr-2024

In the picture, $\triangle A B C$ is inscribed in a circle. P is a point on the minor arc $A B$. $P L, P M \& P N$ are perpendiculars dropped from P to $B C, A B \& C A$ (produced) respectively and LMN is the Simson line with respect to P.

Prove: $L N=\frac{(P C \times A B)}{D}$, where D is the diameter of the circle.

Question framed by DR. M. RAJA CLIMAX
Founder Chairman, CEOA Group of Institutions

Tamil Nadu, India

Author's Solution

Given :

$\triangle A B C$ is inscribed in a circle. P is a point on the minor arc $\mathrm{AB} . \mathrm{PL}, \mathrm{PM} \& \mathrm{PN}$ are the perpendiculars drawn to $B C, A B \& A C$ respectively and $L M N$ is the Simson line.

To Prove: $L N=\frac{(P C \times A B)}{D}$, where D is the diameter of the circle.

Construction:

Mark the centre of the circle 'O' and
draw PT, the diameter through O. Join PA, PB \& TC

Proof:

$\angle P M B=\angle P L B=90^{\circ}$ (given)
\Rightarrow PBLM is concyclic
$\Rightarrow \angle P B M=\angle P L M$
$\angle P M A+\angle P N A=90^{\circ}+90^{\circ}=180^{\circ}$

\Rightarrow PMAN is concyclic
$\Rightarrow \angle P N M=\angle P A M$
$\Rightarrow(1) \&(2) \rightarrow \triangle P A B \sim \triangle P N L$
$\Longrightarrow \frac{P A}{P N}=\frac{A B}{L N}$
In $\triangle P T C \& \triangle P A N$
$\angle P T C=\angle P A N$
$\angle P C T=\angle P N A=90^{\circ} \quad[\angle P C T$ borne by diameter $]$
$\therefore \triangle P T C \sim \triangle P A N$
$\Rightarrow \frac{P T}{P A}=\frac{P C}{P N}$
(3) \& (4) $\rightarrow L N=\frac{P C \times A B}{P T}$ \qquad Proved

The Utility of the result:

This month's rider is of immense utility to the Geometry lovers. So far, there doesn't seem to be any formula for measuring the length of the Simson line. Here, this result measures the Simson line LMN. ie.

$$
L M N=\frac{P C \times A B}{D}=\frac{P F \times A B}{2 R}=P C \times \operatorname{Sin} C
$$

$$
[\because A B=2 R \operatorname{Sin} C]
$$

In the above picture, $\triangle A B C$ inscribed in the circle. $\mathrm{P}, \mathrm{Q} \& \mathrm{R}$ are points on the minor $\operatorname{arcs} A B, A C$ and $B C$ respectively. $L M N, D E F \& X Y Z$ are the Simson lines drawn with respect to the points $P, Q \& R$.

$$
\text { Now, } \begin{aligned}
L N & =P C \times \operatorname{Sin} C \\
D F & =Q B \times \operatorname{Sin} B \\
X Z & =R A \times \operatorname{Sin} A
\end{aligned}
$$

